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ABSTRACT

This paper presents the method of modeling the torque

generated by a variable reluctance spherical motor (VRSM) that ’

presents some attractive possibilities by combining pitch, roll,
and yaw motion in a single joint. Unlike prior works on the
torque formulation of a VRSM, which were based on a lumped-
parameter approach using ¢quivalent magnetic circuits (widely
used in developing force/torque models for electromechanical
devices), this paper presents a distributed-parameter approach
to predict the motor's magnetic field distribution for formulating
the torque of a VRSM. A detailed three-dimensional finite-
element (FE) analysis has been performed on a VRSM
configuration that consists of both permanent magnet (PM)
poles and air-cored electromagnets. The model obtained using
FE methods offers more insight and an accurate representation
of torque generated by a spherical motor.

1. INTRODUCTION

The rapid advancement of robotics m the 1980's has
motivated the development of several types of multiple-DOF
actuators. Among these are the ball-joint-like spherical motors.
The dominant types of spherical motors independently
developed in the late 1980's are the induction type, the variable
reluctance motor that includes the stepper, and the direct current
motor. As compared with its counterpart, the VR spherical
motor has a relatively large range of motion, possesses isotropic
properties in motion, and is relatively simple and compact in
design. The trade-off, however, is that sophisticated torque
modeling for the design and control of 2 VRSM is required.

A number of rescarch efforts at Georgia Tech have
contributed to the development of torque mode] for a muiti-DOF
spherical motor. Lee ef al. [1] presented the dynamic model of
a VR spherical motor, which included the development of a
torque model of the spherical motor in a quadratic form. The
torque model describes the electromagnetic interaction of the
spherical motor and defines the actuating torques for a specified
set of electrical inmputs to the stator coils at amy given rotor
orientation. The lumped-parameter torque model is developed
using equivalent magnetic circuits, where permeance models
play an important role in predicting the torque generated by the
motor. The permeance model was first studied conceptuaily by
Lec and Kwan [2] using assumed flux paths, and was further
investigated theoretically by Lee er al. [3] using finite-element
methods, and experimentally by Lee et al. [1]. Pei [4] used both
the two-dimensional (2D)) vector potential and 3D reduced
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- scalar potential formulations to analyze the magnetic flux paths.

While the 2D formulation offers a better visualization of the
flux paths, a 3D analysis can provide a more accurate account of
the magnetic field distribution. However, Pei’s work [4]
stopped short at modeling the permeance (or the reciprocal of
the magnetic reluctance} used in cquivalent magnetic circuit
models. Roth [5] developed an experimental method and
algorithms to determine the permeance model. The results
agreed well with the theoretical models proposed by Lee and
Kwan (2] and Lee et af. [3]. To reduce the contact reaction
between the rotor and stator, Zhou and Lee [6] extended the
torque model from three degrees-of-freedom (DOF) to six-DOF
and also derived a maximum torque formula to characterize the
spherical motor’s output torque capability. The motor designs to
date have been based on arguments employing magnetic circuit
concepts. The ability to accurately model the torque and predict
the torque for a given design geometry is essential for high
precision motion control applications,

The spherical motor referred to in this paper has a similar
structure as the ball-joint-like device [1], Unlike prior works on
the torque formulation of a VR spherical motor, which were
based on a lumped-parameter approach using equivalent
magnetic circuits (widely used in developing force/torque
models for electromechanical devices), this paper uses a
distributed-parameter approach to predict the metor's magnetic
field distribution for formuiating the torque of a spherical motor.
Torque models developed using the solution to the spherical
motor's magnetic field distribution give better insight and a
more accurate formulation of the spherical motor torque. The
field distribution in a typical electromechanical device like the
spherical motor is governed by a set of partial differential
equations commonly referred to as Maxwell's equations.
Closed-form solutions to these equations arc rather cumbersome
and are only available for a few devices with relatively simple
structures. In this paper, Maxwell's equations that govern the
spherical motor field distribution are formulated using scalar
potential functions and solved using FE methods. The FE
package, ANSYS, written by Swanson [7] has been used to
predict the magnetic fieids [3).

The remainder of this paper is organized as follows:
Section 2 presents the governing equations for calculating the
force/torque gencrated by the spherical motor from the magnetic
field distribution. Sections 3 and 4 provide an in-depth analysis
of the magnetic field and torque generated by the interaction
between a pair of electromagnetic coils and a pair of permanent
magnet tofor poles, a basic torque generating unit. The
application of the solution obtained using the FE analysis to a
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specific VRSM design configuration is presented in Section 5.
The conclusions are made in Section 6.

2. GOVERNING EQUATIONS

The torque of an electro-magnetic actuator is a function of
magnetic field distribution governed by Maxwell's equations:
VeB=0 n
VxH=J {2)
where B is the magnetic flux density; H=H,+H is the
magnetic field intensity; and J is the current density. The
magnetic field intensity due to the current source H, is solved
using the Biot-Savart law:

L JIxr
H; i .(’ |r|3 av 3.

where r is the position vector from the current source to a node
and ¥ is the volume of the current source. The magnetization
of the material H _ is-curl free and-expressed in terms of a scalar
potential function ® :

H, =-Vd (%
Using the constitutive relationship
B=uH _ (5)
and Equation {4), Equation {1} can be written as ’
Ve(uVD)=0 (6)

This is commonly referred to as Laplace’s equation.

The solutions to the Laplace equations in regions of
different matenials require a set of boundary conditions. The
following conditions at the interface boundary between any two
regions with different material properties must be satisfied.

ngx{H; -Hy)=J, (72)
;¢ (B; —By)=0 (7b)
where n ; is a unit vector perpendicular to the surface boundary

directed from the & medium to the f" medium; and J, is the
surface current density at the interface.

Once the magnetic field distribution is solved with an
appropriate set of boundary conditions, the torque generated by
the spherical moter can be computed using Equation (8:

-~ L ax(IxB)d¥ (%)
where (J xB) is the Lorentz force; and a represents the mement

arm perpendicular to the axis of rotation and directed to the
point at which the force is computed.

The magnetic field distribution is required to evaluate the
generated torque. The challenge for solving the Laplace’s
equation for the magnetic field distribution of a spherical motor
is due to the boundary conditions that resuli from the complex
spherical motor arrangement of the rotor poles and the inherent
3-D nahiwre of the problem. For this reason, the Laplace
equation is solved numerically using FE methods for the
magnetic scalar potential from ANSYS. The magnetic field
intensity and flux density are then derived from the potential
functions. Since the ANSYS FE package does not provide
torque as an output, a macro was written to compute the
generated torque by summing the cross products of the
elemental force with its centroid using Equation (8).
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3. 3D FE ANALYSIS OF THE MAGNETIC FIELDS

Figure 1 shows a typical relationship between a pair of rotor
poles and a pair of stator coils that make up the basic torque
generating unit, where the rotor caps and base are made up of
high permeability iron. In formmulating the magnetic field
distribution of the spherical motor, the space occupied by the -
motor is divided into five regions. As shown m Figure 1,
Region 1 is the free space (air). The penmanent magnets of the
rotor pole occupy Region 2. The iron cap and base for the rotor
pole make up Regions 3 and 4 respectively. Region 5 defines
the stator coil. For free space regions; a relative permeability of
£, =1 is specified. For iron regions, the material properties
can be specified in terms of either relative permeability or a BH
curve. For PM regions, the required material propertics are
components of the magnetic coercive force vector and the PM
relative permeability. The coercive force vector components
specify the magnetization axis of the PM. The relative
permeability of the PM is expressed as

Mo = 9
o H ¢

is the residual magnetization; and XM is the
magnitude of the coercive force vector.

where B,

.y m‘ .9
To pok Cap

Figure 1 Spherical motor sclution regions

The specific ANSYS program uses SOLIDS6 elements to
mesh the rotor structure shown in Figure 1. The electromagnets
are modeled by SOURCE36 elements. The FE model is
completed by enclosing the rotor and stator coils with a volume
of air (or free space} and by modeling the free space boundary
with far field boundary using INFIN47 elements.

An ANSYS program is written to predict the magnetic field
distribution between a pair of stator coils and rotor poles with a
separation angle of 30° as shown in Figure 2. For the
computation, a relative permeability of 4, =1and g, =1000 is
used for the free space and iron regions respectively. For the
PM regions, a magnetic coercive force magnitude of
H, =795,770 A/m and a residual magnetization of B, =1.12T
are used. The coil geometry is given in Table i.
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(a} plan view (b) front view
Figure 2 Interaction between stator coil and rotor pole

'fable 1 Stator Coil Geome!

GEOMETRY VALUES
Coil amperes-tmns 44, 1000 turns

* [ Inside and outside radii 4.76 mm, 12.7mm
Length 254 mm
Rotor/stator air gap 0.762 mm

Figure 3 shows the distribution of the magnetic scalar
potential . obtained from the finite element solution. The
increase in potential from left to right implies that the magnetic
flux density vector is directed right. This results since the flux
density points from the South Pole to the North Pele. Using
Equation (4) and the constitutive relation in Equation (5),
ANSYS computes the magnetic field intensity and flux density
for each region in the spherical motor workspace. Figures 4(a)
and 4(b) show delailed plots of the scalar potential and flux
density distribution in the rotor region. The iron caps of the
rotor poles are at a constant potential. Due to the symmetry of
the location of the poles and the equal and opposite excitation of
the stator coils, the magnetic scalar petential of the rotor base is
almost zero.

Figure 3 Magnetic scalar potential

(a) Scalar ptentxal (b) Magnetic flux density
Figure 4 Field distribution in the rotor
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The magnetic flux density distribution in the free space (air)
region is essential for evaluating the torque of the spherical
motor. Figures 5(a) and 5(b) show the magnetic scalar potential
and flux distribution in the free space region. The magnetic flux
density is uniform immediately around the rotor pole cap and is
aligned with the pole’s magnetization axis.

{a) Scalar potential (b} Magnetic flux density
Figure 5 Field distribution in the air space

4. 3D FE ANALYSIS OF THE MOTOR TORQUE

The uniform magnetic field density over the stator ceil
suggesis that the torque in Equation (8) may be computed from
the cross product of the stator coil’s dipole moment m and the
flux, density due to the rotor pole.

T=mxB - (9)
For cylindrical stator coils, the magnetic dipole moment is
ngi;
m; = L’ AZ,; (10)

[
where &, is the orientation vector of the ™ stator coil; n, is the
number of turns in the coil; L. is the length of the ¢lectromagnet;
and A is the mean surface area of the coil.
4.1 Torque-current relationship
The torque generated by the interaction between the stator
coils and rotor poles, similar to that shown in Figure 2 but with

a separation angle of 16° is computed using the ANSYS
program as a function of stator ¢oil current varied from -4A to

4A in increments of 0.5A.  The computed torque is displayed in

Figure 6.

Flepu

Figure 6 Linear torque-current relationships

In Figure 6, the change in sign of the z component of the
torque indicates the switch from repulsion fo attraction of the
spherical motor rotor. The finite element results in Figure §
show a hnear relationship between the spherical motor torque

3



and the stator coil current input. This linear relationship implies
that the contribution of seif and mutual inductances on the
torque is small compared to that contributed by the interaction
between the air-cored electromagnets and the PM rotor poles.

4.2 Torgue direction

The linear toque-current relationship and that the magnetic
flux density is aligned with the pole’s magnetization axis further
suggest that the torque generated by the pair of stator coils and
rotor poles has the following form:

T .f( Waddalic BN

Lk P ISJ' <R, (1
where R; is the umit vector describing the locations of the kK*
rotor pole in stator-fixed frame; and f(g ;) is an even function

of the rotor orientation for a given geometry of electromagpets
and rotor poles.

Table 2 summmarizes the torque integrated using Equation
(8) with the magnetic field obtained from the ANSYS
computation for two different orientations of the rofor pole-pair
with respect to the pair of stator coils. Table 2 also shows that
the direction of the torque computed from the cross product of
the unit vectors describing the stator-coil and the rotor-pole
magnetization axes closely agree with the theoretical predictions
of Equations (8}, (9} and (10).

Table 2: Torque Direction
Coil Ortentation - 8 J [-.309, -.951, .000]

1179, .970, .163]
(285, -.092, 228]

Pole Magnerization Axis - R
Torque (ANSYS) T (Nm)

{.500, 866, .000]
(015, -.009, -.305]
(049, - 029, - 998)

Torque Direction, 7 /|T] (754, - 245, 609)

[.000, 000, -1.00) | [.745, - 242, 622}

~{5, 2R M8, xRy

4.3 Torque characteristic function

In addition, both of these two roior orientations in Table 2
have the same separation angle (or the angle between the coil
axis and the magnetization axis of the rotor PM) of 12° The
magnitude of the resuliant torque generated for the orieniations
#] and #2 are 0,306Nm and 0.376Nm respectively; they are
within 0.07Nm of each other. This difference is within the error
limits due to the finite element mesh. The result is expected
since the rotor pole and the stator coll are axis-symmetric. For a
given geometry, the magnitude of the torque generated by the
coil/pole interaction (for the symrmetric structure as shown in
Figure 1) depends only on the separation angle between the
rotor pole and the stator coil, ¢ .

To determine the torque characteristic function, the
magnitudes of the resultant torque were computed for separation
angles ranging from —36° to 24° in 3° increments with the setup
shown in Figure 2, The torque characteristic function computed
as a function of separation angle

T
f(?;,e)=|L—f‘|-! (12)
ety

is shown in Figure 7.
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Torque éonstant
appraximate functién

Figure 7: Torque characteristic function /(g ) IT ik "l ni;

The torque characteristic function in Equation (16) is
approximated using a radial basis transfer function with the
following form:

N
o= Xa,. exp(- A, @%) (13)
n=1 '

where the estimation coefficients &, and A, and the order of
the estimation function /N ,are determined such that the norm
squared of the estimation errer I_/(.ipjk )~ ey ]r is minimized.

For the specific geometry shown in Figure 1 and Table !, the
coefficients for the approximate function are given in Table 3.
Equations (12) and (13) are compared in Figare 7.

Table 3: Coefficients for 7(p,) with N =4

” A, a,

1 8.02 -35.62
2 7.85 35.8%
3 38.90 0.1¢

4 176.61 -0.28

5. TORQUE MODEL OF THE SPHERICAL MOTOR

Figure 8 shows the design example considered in this
paper. The structure consists of A, neodymiumn-iron-boron
permanent magnets (PM) poles, and 2 layers of N, stator coiis.

The locations of the rotor poles and their magnetization
axes (ryand M, for k=1,---, N, respectively) are represented
by unit vectors in the rotor frame (xyz) as

ry ={Crp,  Sig, 01" (14)
M, = (—DH** Dy, (15)
where Cyg and Sy denote the cosine and sine of the angle

k0_; 8, isthe angle between any two adjacent rotor poles.

Similarly, the location of the / stator coil on the # layer in
stator-fixed frame (XYZ) is expressed as
S, =(D"[Crp, Co SoCo Sa I (16)
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where j=mi, { =12 denotes the layer; m=1,---,N_ is the
pole number on a given layer; &, is the angle between adjacent
stator poles; and a, is the inclination angle of stator coil layer

from the XY plane. In order to have no generated torque when
there are no current excitations, the stator ceils are wound on
non-ferromagnetic cores.

Typical Geometrical values for the design example are
summarized in Table 4.

{Aluminum) # 4

Rotor ball .
¥ (Liquid plastic)

(¢) Rotor pole layout and magnetion axes

Figure 8 Exampie solid model of a spherical motor

Table 4 Geometry of the design example

Parameters Values ]
8, 72°
. 60°
o 26.565°
N5 10
v 6
Radius of the rotor 75mm

The results presented in Sections 3 and 4 have been
computed for the interaction between a pair of rotor poles and a
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pair of air-cored electromagnets. If the principle of
superposition holds, the torque model of the complete spherical
motor can be derived from the model presented in Figure 1. In
other words, the torque of the complete spherical motor can be
deduced from the vector summation using Equations (11) and
(13) for a specified coils and rotor poles,

The principle of superposition was verified by evaluating
the torque that resuits from the interaction of one stater coil pair
with two pairs of rotor poles, and comparing these results with
the torque obtained by sumiming up results from individual pole
pair imnteractions. Figure 9 shows the corresponding simulation
results computed using the setup similar to that shown in Figure
2. The superposition of the two individual cases came very
close to the case with the combined rotor poles. This verifies
that the torque generated by the interaction of one stator pole
pair with N rotor pairs is similar to swmming up the interaction
of N one pole-pair interactions, Therefore, the torque generated
by the interaction of one stator pole pair and N rotor polc pairs
can be evaluated as follow:

d 5, "‘Rk .
Z Fleu) = —"ni, a7

The principles of superposition are finally validated if the
torque generated by adding one more stator pair results in the
same torque as the sum of the individual pair interactions.
Similarly, the superposition of thé individual results agreed
closely with the combined results. The error between the two
cases falls within the error range due to the quality of the mesh.
With this in mind, the spherical motor torque model has the
following form:

PR Y S xRy
:ngjM Ig (@) m"c'} (18)

In a more compact form, Equation (18) can be expressed as:
T=[K, (1%}
where [K,] is the spherical motor torque constant and {, is the

vector of stator pole coil current inputs. The form of the torque

model is very conducive for feedback confrol as a linear as

oppesed to a nonlinear constrained optimization is needed to

compute the stator coil current input vector [9]. This linear
relationship not only reduces the computational requirement of

the controller, but also a wider range of controller techniques is

available to choose from. The form of the torque was exploited

in the design of the robust back stepping controller [10].

6. CONCLUSIONS

The method of modeling the torque generated by a VR
spherical motor using the 3D finite element formulation has
been presented. The model obtained using FE methods offers
more insight and an accurate representation of torque generated
by a spherical motor, which is essential for both design
optimization and contrel of the spherical motor.  The FE
method presented here can potentially reduce the number of
configurations that need to be built and tested as it provides
capabilities for investigating the effects of key parameters on the
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torque performance, The capabilities offered by the ANSYS
fimte eclement formulation of the spherical motor could,
therefore, lead to a significant reduction in the design cycle
time.

Figure 5 Superposition of Spherical Motor Torque
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