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ABSTRACT 

This paper presents the method of modeling the torquc 
generated by a variable reluctance spherical motor W S M )  that 
presents some attractive possibilities by combining pitch, roll, 
and yaw motion in a single joint. Unlike prior works on the 
torque formulation of a VRSM, which were based on a lumped- 
parameter approach using equivalent magnetic circuits (widely 
ised in developing forceitorque models for electromechanical 
devices), this paper presents a distributed-parameter approach 
to predict the motofs magnetic field distribution for formulating 
the torque of a VRSM. A detailed three-dimensional finite- 
element (FE) analysis has been performed on a VRSM 
configuration that consists of both permanent magnet (PM) 
poles and aircored electromagnets. The model obtained using 
FE methods offers more insight and an accurate representation 
of torque generated by a spherical motor. 

1. INTRODUCTION 
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scalar potential formulations to analyze thc magnetic flux paths. 
While the 2D formulation offers a better visualization of the 
flux paths, a 3D analysis can provide a ?re accurate account of 
the magnetic field dishibution. However, Pei's work [4] 
stopped shoe at modeling the permeance (01 the reciprocal of 
the magnetic reluctance) used in equivalent magnetic circuit 
models. Roth [5 ]  developed an experimental method and 
algorithms to determine the permeance model. The results 
a p e d  well with the theoretical models proposcd by Lec and 
Kwan [2] and Lee el a/. [3]. To reduce the contact reaction 
behvcen the rotor and stator, Zhou and Lee [6] extended the 
torque model h m  three degrees-of-freedom (DOF) to six-DOF 
and also derived a maximum torque formula to characterize the 
spherical motor's output torque capability. The motor designs to 
date have been based on arguments employing magnetic circuit 
concepts. The ability to accurately model the torque and predict 
the torque far a given design geomdzy is essential for high 
precision motion control applications. 

The spherical motor referred to in this paper has a similar 
stmchre as the ball-joint-like device [I 1. Unlike prior works on 

The rapid advancement of  robotics in the 1980s has the torque formulation of a VR sphe&ai motor, which were 
motivated the development of several types of multiple-DOF based on a lumped-panmeter approach using equivalent 
actuators. Among these are the ball-join-like spherical motors. magnetic circuits (widely used in developing forceitorque 
The dominant types of spherical moton independently models for electromechanical devices), this paper uses a 
developed in the late 1980s are the induction type, the variable distributed-parameter approach to predict the motor's magnetic 
reluctance motor that includes the stepper, and the direct current field dishibution for formulating the torque of a spherical motor. 
motor. As compared with its cou&part, the VR spherical 
motor has a relatively large range of motioh possesses isolropic 
properties in motion, and is relatively simple and compact in 
design. The trade-off, however, is that sophisticated torque 
modeling for the desi@ and control of a VRSM is required. 

A number of research efforts at Georgia Tech have 
conhihuted to the development of  torque model for a multi-DOF 
spherical motor. Lee el a/. [ I ]  presented the dynamic model of 
a VR spherical motor. which included the development of a 
torque model of the spherical motor in a quadratic form. The 
torque model describes the electmmagnetic interaction of the 
spherical motor and defines the actuating torques for a specified 
set of electrical inputs to the stator coils at any given rotor 
orientation. The lumped-parameter torque model is developed 
using equivalent ma&nneric circuits, where permeance models 
play an important role in predicting the torque generated by the 
motor. The permeance model w3s fust studied conceptually by 
Lee and Kwan [2] using assumed flux paths, and was further 
investigated theoretically by Lee ef o/. [3] using finite-element 
methods, and experimentally by Lee er a/. [ I ] .  Pei [4] used both 
the two-dimensional (2D) vector potential and 3D reduced 

Torque models developed us& the s&tion to the spherical 
motofs magnetic field distribution give betta insight and a 
more accurate formulation of the spherical motor toque. The 
field distribution in a typical electromechanical device like the 
spherical motor is govemed by a set of partial different& 
equations commonly referred to as Maxwdl's equations. 
Closed-form solutions to these equations are rather cumbersome 
and are only available for a few devices with relatively simple 
structures. In this paper, Maxwell's equations that govem the 
spherical motor field distribntion are formulated using scalar 
potential functions and solved using FE methods. The FE 
package, ANSYS, written by Swanson [7] has been used to 
predict the magnetic fields 181. 

The remainder of this paper is organized as follows: 
Section 2 presents the governing equations for calculating thc 
forceitorque generated by the spherical motor from the magnetic 
field distribution. Sections 3 and 4 provide an in-depth analysis 
of the magnetic field and torque generated by the intenction 
between a pair of electromagnetic coils and a pair of permanent 
magnet rotor poles, a basic torque generating unit. The 
application of the solution obtained using the FE analysis to a 
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specific VRSM design configuration is presented in Section 5.  
The conclusions are made in Section 6. 
2. GOVERNING EQUATIONS 

magnetic field distrihution govemed by Maxwell's equations: 
The torque of an electro-magnetic actuator is a function of 

V.B=O (1) 
V x H = J  (2) 

where B is the magnetic flux density; H = H, + H, is the 
magnetic field intensity; and J is the current density. The 
magnetic field intensity due to the current source 4 is solved 

, 

. . .  . 

. .  using the Biot-Savart law: 

.. . 

I J x r  
Hs =& (3) 

. .  , 

.. . .  ....., ': '-. . 
where r is the position vector from the current source to a node 
and V is the volume of the c-nt source. The magnetization 
of the material H, is curl free and.expressed in terms of a scalar 
potential function 0 : 

Using the constitutive relationship 

and Equation (4), Equation ( I )  can he A t t e n  as 

This is commonly referred to as Laplace's equation. 

The solutions to the Laplace equations in regions of 
different materials require a set of boundary conditions. The 
following conditions at the interface boundary between any WO 
regions with different material properties must be satisfied. 

H, =-VQ (4) 

B = p E  ( 5 )  

v. (,UVQ) = 0 ( 6 )  

n k j x ( H j - H k ) =  J, (7a) 

nkj '(8, -B,)=O (7b) 
where n *, is a unit vector perpendicular to the surface boundary 

directed from the k" medium to the,'h medium; and J, is the 
slnface current density at the interface. 

Once the magnetic field distribution is solved with an 
appropriate set of boundary conditions, the torque generated by 
the spherical motor can be computed using Equation (8: 

T = - J, (J X B ) ~ V  (8 )  

where (J x B) is the Lorentz force; and a represents the moment 
arm perpendicular to the axis of rotation and directed to the 
point at which the force is computed. 

The magnetic field distribution is required to evaluate the 
generated torque. The challenge for solving the Laplace's 
equafion for the magnetic field distribution of a spherical motor 
is due to the boundary conditions that result from the complex 
spherical m t o r  arrangement of the rotor poles and the inherent 
3-D nature of the problem. For this w o n ,  the Laplace 
equation is solved numerically using FE methods for the 
magnetic scalar potential from ANSYS. The magnetic field 
intensity and flux density are then derived from the potential 
f u n ~ t i o ~ .  Since the ANSYS FE package does not provide 
torque as an output, a macro was written to compute the 
generated torque by summing the cross products of the 
elemental force with its centroid using Equation (8). 

3. 3D FE ANALYSIS OF THE MAGNETIC FIELDS 
Figure 1 shows a typical relationship between a pair of rotor 

poles and a pair of stator coils that make up the basic tarquc 
generating unit, where the rotor caps and base are made up of 
high permeability iron. In formulating the magnetic field 
distrihution of the spherical motor, the space occupied by the . 
motor is divided into five regions. As shown in Figure I ,  
Region 1 is the free space (air). The permanent magnets of the 
rotor pole occupy Region 2. The iron cap and base for the rotor 
pole make up Regions 3 and 4 respectively. Region 5 defhes 
the stator coil. For free space regions; a relative permeability of 
,U, = 1 is specified. For iron regions, the material pmperties 
can be specified in terms of either relative permeability or a BH 
cwve. For PM regions, the required material properties me 
components of the magnetic coercive force vcctor and the PM 
relative permeability. The coercive force vector components 
specify the magnetization axis of the PM. The relative 
permeability of the PM is expressed as 

(9) 
B, M, =- 

M"HC 
where B, is the residual magnetization; and H,is the 
magnitude ofthe coercive force vector. 

I .. . I 
Figure 1 Spherical motor solution regions 

The specific ANSYS program uses SOLID96 elements to 
mesh the rotor structure shown in Figure 1. The electromagnets 
are modeled by SOURCE36 elements. The FE model is 
completed by enclosing the rotor and stator coils with a volume 
of air (or free space) and by modeling the free space boundaq 
with far field boundary using INFIN47 elements. 

An ANSYS program is written to pre&ct the magnetic field 
distribution between a pair of stator coils and rotor polcs with a 
separation angle of 30" as shown in Figure 2. For the 
computation, a relative permeability of & = 1 and p, = 1000 is 
used for the free space and iron regions respectively. For the 
PM regions, a magnetic coercive force ma&nitude of 
H, =795,770Afm andaresidualmagnetizationof B, =1.12T 
are used. The coil geometry is given in Table 1. 
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@) front view 
Figure 2 Interaction between stator coil and rotor pole 

h i d e  and outside radii 
Length I 25.4mm 
Rotoristator air gap I 0.762” 

I 4.76 mm, 12.7- 

Figure 3 shows ,the distribution of the magnetic scalar 
potential. obkined from the f~te element solution. The 
increase in potential Eom let? to right implies that the magnetic 
flux density vector is directed right. This results since the flux 
density points from the South Pole to the North Pole. Using 
Equation (4) and the constihrtive relation in Equation (3, 
ANSYS computes the magnetic field intensity and flux density 
for each region in the spherical motor workspace. Figures 4(a) 
and 4@) show detailed plots of the scalar potential and flux 
density dishibution in the mtor region. The =on caps of the 
rotor poles are at a constant potential. Due to the symmehy of 
the location of the pales and the equal and opposite excitation of 
the shtor coils, the magnetic scalar potential of the rotor base is 
almost zero. 

The magnetic flux density dishibution in the free Space (air) 
region is essential for evaluating the torque of the spherical 
motor. Figures 5(a) and 5 @ )  show the magnetic scalar potential 
and flux distribution in the free space region. The magnetic flux 
density is uniform immediately around the rotor pole cap and is 
aligned with the pole’s magnetization axis. 

. ,  - 
Figure 5 Field distribution in the ai, space 

4. 3D FE ANALYSIS O F  T H E  MOTOR TORQUE 

The uniform magnetic field density over the stator coil 
s u a e s t s  that the torque in Equation (8) may be computed from 
the cross product of the stator coil’s dipole moment m and the 
flux density due to the mtor pole. 

For cylindrical stator coils, the magnetic dipole moment is 
T = m x B  (9) 

where Z,v is the orientation vector of t he j ”  stator coil; nr is the 

number of tums in the coil; L, is the length of the electromagnet: 
and A is the mean surface area ofthe coil. 

4.1 Torquesurrent relationship 

The torque generated by the interaction hetween the Stator 
coils and rotor poles, similar to that shown in Figure 2 but with 
a separation angle of 16’. is computed using the ANSYS 
program as a function of stator coil current varied from -4A to 
4A in increments of0.5A The computed torque 1s displayed in 
Figure 6. 

....................... ........I ........,........ ............... 
.*,.; : ~ : : : : 
...... ?. >. l”u”~. . i  ........ / /  ........ ! .~ .~~ .~~ !  ....... 

: -..,: ~ : : : : 
....... ! ........ (r.l ..... ! ................. / ........ ! ........ ! ....... 

. . . . . .  
. . . .  

. . . . . . . .  

show a linear relationship behveen the spherical motor torque 
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and the stator coil current input. This linear relationship implies 
that the contribution of self and mutual inductances on the 
torque is small compared to that contributed by the interaction 
between the air-cored electromagnets and the PM rotor poles. 

4.2 Torque direction 

The linear toque-cwent relationship and that the magnetic 
flux density is aligned with the pole's magnetization axis further 
suggest that the torque generated by the pair of stator coils and 
rotor poles has the following form: 

PoleMagmial ionAxlr-  Rk 
Torque (ANSYS) T (Nm) 

T o r q u c D k t i ~ R  TllTl 

-(S,XR,)/(S, X R k I  

where & is the unit vector describing the locations of the Ph 
rotor pole in stator-ked frame; and f ( q i r )  is an even function 
of the rotor orientation for a given geomeby of electromagnets 
and rotor poles. 

Table 2 summarizes the torque integrated using Equation 
(8) with the mapetic field obtained from the ANSYS 
computation for two different orientations of the rotor pole-pair 
with respect to the pair of stator coils. Table 2 also shows that 
the direction of the torque computed from the cross product of 
the unit vectors describing the stator-coil and the rotor-pole 
magnetization axes closely agree with the theoretical predictions 
of Equations (8), (9) and (IO). 
Table 2: Torque Eirection 

R coil OrimLvlon - s ; I 1-.309. -.951. .XI01 I 
(.5XI,.865.000] [.179,.970,.163] 

[.015. -.W9, -.305] 1285, -.092, .228] 

1.049, -.029,-.998] 1.754, -.245,.6091 

].WO..OW,-l.W] [.745,-.242,.622] 
- 

n 2" a" 
1 8.02 -35.62 
2 7.85 35.89 
3 38.90 0.10 
4 176.61 -0.28 

4.3 Torque characteristic function 

In addition, both of these two rotor orientations in Table 2 
have the same separation angle (or the angle between the coil 
axis and the magnetization axis of the rotor PM) of 12'. The 
ma,&tude of the resultant torque generated for the orientations 
# I  and #2 are 0.306" and 0.376" respectively; they are 
within 0.07" of each other. This difference is within the error 
limits due to the f ~ t e  element mesh. The result is expected 
since the rotor pole and the stator coil are axis-symmehic. For a 
given geometry, the magnihlde of the torque generated by the 
coibpole interaction (for the symmetric sbucture as shown in 
Figure 1) depends only on the separation angle between the 
rolor pole and the stator coil, p,, . 

To determine the torque characteristic function, the 
magnitudes of the resultant torque were computed for separation 
angles ranging from -36' to 24O in 3O increments with the setup 
shown in Figure 2. The torque characteristic function computed 
as a function of separation angle 

is shown in Figure 7 

Figure7: Torque characteristic function/(pj,)=lrj,lll..i, 
The torque characteristic function in Equation (16) is 

approximated using a radial basis transfer function with the 
following form: 

Y 

"4 

where the estimation coefficients an and A, and the order of 
the estmation function N ,are determined sucb that the n o m  

5. TORQUE MODEL OF TEE SPHERICAL MOTOR 

Figure 8 shows the design example considered in this 
paper. The struchn'e consists of N, neodymium-iron-boron 
permanent magnets (PM) poles, and 2 layers of N, stator coils. 

The locations of the rotor poles and their mametization 
axes ( ri and M for k = 1,. . . , N, respectively) are represented 
by unit vectors in the rotor h e  (xyz) as 

rr =[c,, s,, 01' (14) 

M, = (-l)(k+')rk (15) 
where C,, and S,, denote the cosine and sine of the angle 

kB, ; 8, is the angle between any WO adjacent rotor poles. 

stator-fixed frame ( X Y Z )  is expressed as 
similarly, the location of the j I h  stator coil on the th layer in 

s ,  = (-l)(l+') I c m s , ~ 4  s,,,e.Cn, su.]r (16) 
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where,= m l ;  1 =1,2 denotes the layer; * = I , - - - , N ,  is the pair Of airsored electromagnets. If the principle of 
pole number on a given layer; s ,~  is the angle between adjacent SUPerpOSitiOn holds, the torque model of the complete spherical 

motor can be derived from the model presented in Figure 1. In 
stator poles; and a., is the inclination angle of stator coil layer other of the comn,ete motor can be 
from the XY plane. In order to have no generated torque when 
there are no current excitations, the stator coils are wound on 
non-ferromagnetic cores. 

Typical Geometrical values for the design example are 
summarized in Table 4. 

deduced from the vector summation using Equations (I 1) and 
(1  3) for a specified coils and rotor poles. 

The principle of superposition was verified by cvaluahg 
the torque that results from the interaction of on6 stator coil pair 
with two pairs of rotor poles, and comparing these results with 
the toraue obtained bv summine UD results from individual wle 

(a) Slator Curl 

(c) Rotor pole layout and magnetization axes 

I .  

pair interactions. Figure 9 shows the corresponding simulation 
results computed using the setup similar to that s h o w  in Figure 
2. The superposition of the two individual cases came very 
close to the case with the combined rotor poles. This verifies 
that the torque generated by the interaction of one stator pole 
pair with N rotor pairs is similar to summing up the interaction 
of N one pole-pair interactions. Therefore, the torque generated 
by the interaction of one stator pole pair and N rotor pole pairs 
can be evaluated as follow: 

The principles of superposition am- fmlly validated if the 
toque generated by adding one more stator pair results in the 
same torque as the sum of the individual pair interactions. 
Similarly, the superposition of the individual results agreed 
closely with the combined results. The error between the two 
cases falls within the mor range due to the quality of the mesh 
With this in mind, the spherical motor torque model has the 
following form: 

In a more compact form, Equation (1 8) can be expressed as: 

where [K,] is the spherical motor torque constant and 1, is the 
vector of stator pole coil current inputs. The form of t&e torque 
model is very conducive for feedback conh-ol as a linear as 
opposed to a nonhear constrained ophization is needed to 
compute the stator coil current input vector [9]. This linear 
relationship not only reduces the computational requirement of 

T = [K, 11.. (19) 

Figure 8 Example solid model of a spherical motor the controller, but also a wider range i f  controller techniques is 
available to choose from. The form of the torque was exploited 
in the design of the robust back stepping controller [IO]. Table 4 Geometry of the design example 

Porm”er* [ Values 
a I 770 1 6. CONCLUSIONS 

26.565’ 

nr- 

The method of modeling the torque generated by a VR 
spherical motor using the 3D fuUte element formulation has 
been presented. The model obtained using FE methods offers 
more insight and an accurate representation of torque generated 
by a spherical motor, which i s  essential for both desiw 
optimization and control of the spherical motor. The FE 
method presented h a  can potentially reduce the number of 
configurations that need to be built and tested as it provides 
capabilities for investigating the effects of key parameters on the 

The results presented in Sections 3 and 4 have been 
computed for the mteraction between a paU of rotor Poles and a 
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torque performance. The capabilities offered by the ANSYS 
finite element formulation of the spherical motor could, 
therefore, lead to a significant reduction in the design cycle 
time. 
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